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Abstract. We propose a new method for the construction of a consistent meson exchange current in r-space
for the spin-isospin–dependent central and tensor part of phenomenological nucleon-nucleon potentials by
using a Laplace transformation, which allows the representation by a finite number of Yukawa functions.
This method is applied to the Paris and the recent Argonne V18 potentials. Results are presented for
electrodisintegration of the deuteron near threshold.
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1 Introduction

The contribution of meson exchange currents (MECs)
to electromagnetic reactions (e.m.) on nuclei, like photo-
induced reactions and electron scattering, constitute an
important manifestation of meson degrees of freedom me-
diating the strong interactions between nucleons in nuclei.
They describe the e.m. interaction with a nucleus during
the interaction of nucleons and appear formally in the nu-
clear current operator as two- or many-body operators.
Thus, they are intimately linked to the NN -interaction.
However, for a given NN -potential there exists no a priori
way of constructing the appropriate MEC-operators, un-
less the NN -potential is derived from an underlying more
fundamental field theoretical framework with explicit sub-
nuclear degrees of freedom which allows the construction
of the corresponding two-body currents in parallel to the
NN -potential. Although the existence of exchange cur-
rents associated with an exchange NN -potential has been
acknowledged for a long time, the early realistic potentials
being phenomenological to a large extent prevented thus
the explicit consideration of such exchange currents.

A breakthrough came with the meson-theory-based
construction of MEC-operators. Thus, purely meson ex-
change models of the NN -interaction like the Bonn po-
tentials [1] allow one to build the appropriate consistent
MEC-operators uniquely (for a recent derivation includ-
ing leading order relativistic contributions see [2]). In these
studies it turned out that the most important MEC con-
tributions came from the π- and ρ-MEC which are di-
rectly related to the spin-isospin–dependent central and

a e-mail: arenhoev@kph.uni-mainz.de

tensor part of the NN -potential [3–6]. But for largely
phenomenological potentials the construction of a con-
sistent MEC remained questionable. In view of the fact
that realistic phenomenological potentials incorporated π-
exchange as longest-range contribution, one often used for
such potentials only a regularized π-MEC as an approxi-
mation.

However, the above-mentioned results for meson-
theoretical models suggested a method which provides also
for the spin-isospin–dependent central and tensor part of a
phenomenological potential a consistent MEC whose con-
struction is based on an analogy with the properties of
π- and ρ-MEC [7,8]. Essentially this method relies on a
splitting of the spin-isospin–dependent central and tensor
part of a given NN -potential into a π- and ρ-like part
for which the consistent MECs are known. While the ap-
proach of Riska [8] is based on the momentum space rep-
resentation of the potential and can be applied to any
given phenomenological potential, the method of Buch-
mann et al. [7] is conceived for r-space calculations and
needs a representation of the potential as superposition
of Yukawa functions. Thus, the application of the latter
method seems to be more limited because not all phe-
nomenological potentials have such a form. On the other
hand, in view of recent high precision, though largely phe-
nomenological NN -potentials, like the Argonne V18 [9], it
would be desirable to have a method available which al-
lows the construction of a consistent exchange current for
such potentials directly in r-space representation.

It is the aim of the present paper to show, that it is
possible to represent a given realistic r-space potential in
general as a superposition of Yukawa functions such that
the construction of a consistent MEC in r-space is easily
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achieved. This new method is based on the representation
of the radial central and tensor parts of a spin-isospin–
dependent potential by a Laplace transformation. First,
we will briefly review in the next section the approaches
of [7,8]. Section 3 contains the central idea introducing
the Laplace transformation. Explicit applications to the
Paris and Argonne potentials are presented in sect. 4. In
sect. 5 we consider electrodisintegration of the deuteron
near threshold as a test case for the evaluation of the cor-
responding MECs. Finally we close with a summary.

2 Basic formalism

We will focus now on the spin-isospin–dependent part of
a given NN -potential having the general form

V στ (r) = �τ1 · �τ2

(
�σ1 · �σ2 V στ

C (r) + S12 V στ
T (r)

)
, (1)

where
S12 = 3�σ1 · r̂ �σ2 · r̂ − �σ1 · �σ2 (2)

denotes the usual spin tensor operator. A pure unregular-
ized π-exchange potential is given by

V στ
π (�r ) = �τ1 · �τ2

3V 0
π

m2
π

�σ1 · �∇�σ2 · �∇ Jmπ
(r) , (3)

with the potential strength denoted by V 0
π and

Jm(r) =
e−mr

4πr
. (4)

By recoupling

�σ1 · �∇�σ2 · �∇ =
1
3

(
�σ1 · �σ2 ∂2

r,C + S12∂
2
r,T

)
(5)

with radial differentiation operators

∂2
r,C =

1
r

d2

dr2
(r ·) and ∂2

r,T = r
d
dr

(
1
r

d
dr

·
)

, (6)

and using

∂2
r,C Jm(r) = m2 Jm(r) − δ(�r ) , (7)

∂2
r,T Jm(r) = m2 FT(mr)Jm(r) , (8)

with

FT(x) = 1 +
3
x

(
1 +

1
x

)
, (9)

it can be brought into the form (1) with

V π
C (r) =

V 0
π

m2
π

∂2
r,C Jmπ

(r) =

V 0
π

(
Jmπ

(r) − 1
m2

π

δ(�r )
)

, (10)

V π
T (r) =

V 0
π

m2
π

∂2
r,T Jmπ

(r) =

V 0
π FT(mπr)Jmπ

(r) . (11)

Analogously, the dominant part of the ρ-exchange poten-
tial has also the form (1) with

V ρ
C(r) = 2V 0

ρ ∂2
r,CJmρ

(r) and V ρ
T(r) = −V 0

ρ ∂2
r,TJmρ

(r).
(12)

The potential strength is denoted by V 0
ρ .

The corresponding exchange currents read for π-
exchange

�π(�x,�r1, �r2) = T 3
12V

0
π

(
δ(�x − �r1)�σ1�σ2 · �∇2

Jmπ
(|r1−r2|)−(1↔2)+�σ1 · �∇1�σ2 · �∇2

Jmπ
(|�r1−�x|) ↔

∇x Jmπ
(|�x−�r2|)

)
, (13)

and for ρ-exchange

�ρ(�x,�r1, �r2)=T 3
12V

0
ρ

(
δ(�x−�r1)(�σ2×�∇2)×�σ1Jmρ

(|r1−r2|)

−(1 ↔ 2)+(�σ1×�∇1) · (�σ2×�∇2)

Jmρ
(|�r1−�x|) ↔

∇x Jmρ
(|�x−�r2|)

)
, (14)

where we have introduced

T 3
12 = (�τ1 × �τ2)3 . (15)

Defining the currents in momentum space by

� (�q, �q1, �q2) =
1

(2π)3

∫
d3xd3r1d3r2e

−i�q·�xei�q1·�r1ei�q2·�r2 � (�x,�r1, �r2), (16)

these currents read

�π (�q, �q1, �q2)=−i δ(�q − �q1−�q2)T 3
12

[
�σ1 (�σ2 · �q2)vπ(�q2)

−(1 ↔ 2) +
�q1 − �q2

q2
1 − q2

2

(�σ1 · �q1)

(�σ2 · �q2)
(
vπ(�q1) − vπ(�q2)

)]
, (17)

�ρ (�q, �q1, �q2)=−i δ(�q − �q1 − �q2)T 3
12

[
�σ1×(�σ2 × �q2)vρ(�q2)

−(1 ↔ 2) +
�q1 − �q2

q2
1 − q2

2

(�σ1 × �q1) · (�σ2 × �q2)(
vρ(�q1) − vρ(�q2)

)]
, (18)

where

vπ/ρ(�q ) =
∫

d3rVπ/ρ(r)ei�q·�r (19)

denotes the corresponding Fourier transforms of the po-
tentials.

As mentioned in the introduction, for the case of phe-
nomenological central and tensor parts of a realistic spin-
isospin–dependent NN -potential, the construction of a
consistent MEC is based on the idea to split these poten-
tial terms into a π-like and a ρ-like part for which the cor-
responding MECs are known. This method has been devel-
oped independently by Buchmann et al. [7] and Riska [8]
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for the Paris potential [10]. Buchmann et al. start from the
representation of the Paris potential in terms of Yukawa
functions which reads in particular for the spin-isospin–
dependent part

V στ
C (r) =

12∑
j=1

gστ
C,j Jmj

(r) , (20)

V στ
T (r) =

12∑
j=1

gστ
T,j FT(mjr)Jmj

(r) . (21)

Here mj , gστ
C and gστ

T denote appropriate masses and cou-
pling constants (for details see [7]). Using (7) and (8) one
finds

V στ
C (r) = ∂2

r,C

12∑
j=1

gστ
C,j

m2
j

Jmj
(r) +


 12∑

j=1

gστ
C,j

m2
j


 δ(�r ) , (22)

V στ
T (r) = ∂2

r,T

12∑
j=1

gστ
T,j

m2
j

Jmj
(r) . (23)

These expressions can be rewritten as

V στ
C (r) = ∂2

r,C

(
V π-like(r) + 2V ρ-like(r)

)

+


 12∑

j=1

gστ
C,j

m2
j


 δ(�r ) , (24)

V στ
T (r) = ∂2

r,T

(
V π-like(r) − V ρ-like(r)

)
, (25)

where the π- and ρ-like parts are given by

V (π/ρ)-like(r) =
12∑

j=1

g
π/ρ
j Jmj

(r) , (26)

with coupling constants defined by

gπ
j =

1
3m2

j

(gστ
C,j + 2 gστ

T,j) and gρ
j =

1
3m2

j

(gστ
C,j − gστ

T,j) .

(27)
Thus the representation of the spin-isospin–dependent
part of the Paris potential in terms of π- and ρ-like poten-
tials is achieved if the δ-function disappears in (24), which
means the coupling constants have to fulfil the following
condition:

12∑
j=1

(gπ
j + 2 gρ

j ) =
12∑

j=1

gστ
C,j

m2
j

= 0 . (28)

If this condition is not fulfilled, as is the case for the Paris
potential, one can modify in (20) the short-range part of
V στ

C (r) by splitting it into

V στ
C (r) = Ṽ στ

C (r) + V sr
C (r) (29)

such that Ṽ στ
C (r) is identical to V στ

C (r) in the long- and
medium-range part but obeys (28). In [7] this is achieved

by changing the coupling constant of the highest mass
gστ
C,12 → g̃στ

C,12, where the latter is determined from (28),
i.e. from

g̃στ
C,12 = −m2

12

11∑
j=1

gστ
C,j

m2
j

. (30)

The difference gστ
C,sr = gστ

C,12 − g̃στ
C,12 serves as coupling

constant for V sr
C (r) = gστ

C,sr Jm12(r). For the remaining
short-range potential V sr

C , a consistent MEC is easily con-
structed [7]. It is obvious that this procedure is not unique
and that it introduces some ambiguity, which indeed is
characteristic for such phenomenological approaches. The
hope is that the important physics in the long- and
medium-range part is preserved.

Riska, on the other hand, considers the momentum
space representation of the potential terms obtaining the
π- and ρ-like pieces from

vπ-like(p) =
1

3p2

[
4π

∫
drr2

(
V στ

C (r)j0(pr)

+2V στ
T (r)j2(pr)

)
− vστ

C (0)
]

, (31)

vρ-like(p) =
1

3p2

[
4π

∫
drr2

(
V στ

C (r)j0(pr)

−V στ
T (r)j2(pr)

)
− vστ

C (0)
]

, (32)

where the subtraction of the term

vστ
C (0) = 4π

∫
drr2V στ

C (r) (33)

is required in order to eliminate the δ-function. It consti-
tutes again a modification of the short-range part of the
original potential part as mentioned above. In fact, in this
case it amounts to the subtraction of a δ-function

V sr
C (�r ) = vστ

C (0) δ(�r ) . (34)

Also here the above-mentioned ambiguity becomes appar-
ent, because any finite-range potential V sr

C (r) with the
property

4π

∫
drr2 V sr

C (r) = vστ
C (0) (35)

would also serve to eliminate the δ-function.
The corresponding MECs are obtained from (13) and

(14) by replacing the Fourier transforms vπ and vρ by the
corresponding ones, vπ-like and vρ-like, respectively. This
method appears more general than the approach of Buch-
mann et al. since it does not rely on the Yukawa repre-
sentation. However, we now will show that also the latter
method can be applied to potentials with a more general
radial dependence.

3 Representation by a Laplace transform

Our first idea was to approximate the given potentials by
a series of Yukawa functions whose coefficients and masses
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are obtained by a least square fit. But depending on the
accuracy needed this can be quite a formidable task be-
cause of the high dimensional parameter space involved.
But then it turned out that an easier and more system-
atic approach can be based on the representation of the
potentials by a Laplace transform. Indeed, because of the
fact that realistic potentials contain as longest-range con-
tribution a π-exchange potential, one can represent the
central and tensor parts of a given realistic potential by a
continuous superposition of appropriate Yukawa functions
(compare with (20) and (21)), i.e.

VC(r) =
∫ ∞

0

dmgC(m)Jm+mπ
(r) =

Jmπ
(r)

∫ ∞

0

dmgC(m) e−mr , (36)

VT(r) =
∫ ∞

0

dmgT(m)FT((m + mπ)r)Jm+mπ
(r) =

∂2
r,T Jmπ

(r)
∫ ∞

0

dm
gT(m)

(m + mπ)2
e−mr , (37)

which is essentially a Laplace transform representation.
We note in passing, that the Fourier transform of VC is
simply given by

vC(�q ) =
∫ ∞

0

dm
gC(m)

�q 2 + (m + mπ)2
. (38)

Introducing π- and ρ-like potentials as in (24) and (25)
with the corresponding representations

V π/ρ-like(r) =
∫ ∞

0

dmgπ/ρ(m)Jm+mπ
(r) , (39)

one obtains the following relations:

VC(r) =
∫ ∞

0

dm (gπ(m) + 2 gρ(m))

×
(
(m + mπ)2 Jm+mπ

(r) − δ(�r )
)

, (40)

VT(r) =
∫ ∞

0

dm (m + mπ)2(gπ(m) − gρ(m))

×FT((m + mπ)r)Jm+mπ
(r) . (41)

Comparison with (36) and (37) gives

gC(m) = (m + mπ)2(gπ(m) + 2 gρ(m)) , (42)

gT(m) = (m + mπ)2(gπ(m) − gρ(m)) . (43)

Again, in order to eliminate the δ-function in (40), one
needs the condition∫ ∞

0

dm(gπ(m)+2gρ(m))=
∫ ∞

0

dm
gC(m)

(m+mπ)2
= 0 . (44)

If this is not fulfilled, one has to separate again a short-
range potential as in (29)

V sr
C (r) =

1
r

∫ ∞

0

dmgsr
C (m) e−(m+mπ)r , (45)

where the coefficients gsr
C (m) in principle can be chosen

quite arbitrarily except for the fulfilment of the relation∫ ∞

0

dm
gsr
C (m)

(m + mπ)2
=

∫ ∞

0

dm
gC(m)

(m + mπ)2
. (46)

However, in practice one would choose them such that only
the short-range part of the original potential is modified.
The associated exchange currents read

�π-like(�x,�r1, �r2) = T 3
12

∫ ∞

0

dmgπ(m)
(
δ(�x − �r1)�σ1�σ2 · �∇2

Jm+mπ
(|r1 − r2|) − (1 ↔ 2)

+�σ1 · �∇1 �σ2 · �∇2 Jm+mπ
(|�r1 − �x|)

↔
∇x Jm+mπ

(|�x − �r2|)
)

, (47)

�ρ-like(�x,�r1, �r2) = T 3
12

∫ ∞

0

dmgρ(m)
(
δ(�x − �r1)(�σ2×�∇2)

�σ1 Jm+mπ
(|r1 − r2|) − (1 ↔ 2)

+(�σ1×�∇1) · (�σ2×�∇2)Jm+mπ
(|�r1−�x|)

↔
∇x Jm+mπ

(|�x − �r2|)
)

. (48)

For the explicit application it is useful to discretize the
integrals in (36) and (37), for example by Gauss quadra-
ture ∫ ∞

0

dmh(m) =
N∑

j=1

wj h(mj) , (49)

where N denotes the number of Gauss points, mj the
Gauss points and wj the corresponding weights. Then one
can represent the radial functions in (40) and (41) by a
finite number of Yukawa functions

VC(r) =
N∑

j=1

wj (gπ(mj) + 2 gρ(mj))µ2
j Jµj

(r) , (50)

VT(r) =
N∑

j=1

wjµ
2
j (gπ(mj)−gρ(mj))FT(µjr)Jµj

(r) , (51)

where we have set µj = mj +mπ. The consistent exchange
current is then given as superposition of π- and ρ-like cur-
rents as listed in (13) and (14)

�MEC = �π-like(�x,�r1, �r2) + �ρ-like(�x,�r1, �r2) , (52)

with

�π-like(�x,�r1, �r2) = T 3
12

N∑
j=1

wj gπ(mj)

×
(
δ(�x − �r1)�σ1 �σ2 · �∇2 Jµj

(|r1 − r2|) − (1 ↔ 2)

+�σ1 · �∇1 �σ2 · �∇2Jµj
(|�r1 − �x|) ↔

∇x Jµj
(|�x − �r2|)

)
, (53)

�ρ-like(�x,�r1, �r2) = T 3
12

N∑
j=1

wj gρ(mj)

×
(
δ(�x−�r1)(�σ2×�∇2)×�σ1Jµj

(|r1−r2|)−(1↔2)

+(�σ1×�∇1) · (�σ2×�∇2)Jµj
(|�r1−�x|) ↔

∇x Jµj
(|�x−�r2|)

)
. (54)
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In order to determine the unknown coefficients, one
can choose an appropriate grid of N radial points ri (i =
1, . . . , N), and obtains an inhomogeneous set of 2N linear
equations for the 2N coefficients gπ(mj) and gρ(mj)

ci =
N∑

j=1

AC
ij (πj + 2 ρj) , (55)

ti =
N∑

j=1

AT
ij (πj − ρj) , (56)

where we have introduced for convenience

πj = gπ(mj) , ρj = gρ(mj) ,

ci = VC(ri)/Jmπ
(ri) , ti = VT(ri)/Jmπ

(ri) ,

AC
ij = wj µ2

j e−mjri , AT
ij = wj µ2

j FT(µjri) e−mjri .
(57)

It is worth mentioning that the matrices AC
ij and AT

ij do
not depend on the potentials, only on the chosen grids of
radial points ri and masses mj .

Solving eqs. (55) and (56) by matrix inversion, one
finds for the coefficients

πj =
1
3

N∑
i=1

(
(AC)−1

ji ci + 2 (AT)−1
ji ti

)
, (58)

ρj =
1
3

N∑
i=1

(
(AC)−1

ji ci − (AT)−1
ji ti

)
. (59)

The condition (44) becomes

N∑
j=1

wj (πj + 2 ρj) = 0 . (60)

If this is not obeyed for the given central potential, we
split off a short-range Yukawa potential for the highest
mass µN = mN + mπ

V sr
C (r) = c

e−µN r

r
. (61)

This means that the coefficients ci in (58) and (59) have
to be changed according to

ci → ci + c e−mN ri , (62)

leading to new coefficients πj and ρj . Then the unknown
coefficient c is determined by the requirement that the
resulting new coefficients πj and ρj fulfil (60), which leads
to

c = −
∑N

i,j=1 wj (AC)−1
ji ci∑N

i,j=1 wj (AC)−1
ji e−mN ri

. (63)

4 Application to Paris and Argonne V18

potentials

As first example, we have chosen the Paris potential [10],
because in this case we can compare the Laplace transform

representation of the associated MECs directly with the
consistent π- and ρ-like MECs of [7]. Since for a numerical
evaluation one needs a reliable representation only for the
radial range r = 0–10 fm, we have chosen the grid of N
radial points rj in the range between 0 and about 12 fm
with variable step size with the highest density of points
close to the origin, where the potentials exhibit the largest
variation, and then with increasing step size approaching
the highest value rN . In fact, an educated choice will have
to take into account the radial behaviour of the potential
under consideration. In detail, we have chosen the r-grid
to be defined by the following expression:

rj = r0 + (ea(j−1) − 1) eb(j−1) fm , (64)

with r0 = 0.01 fm, a = 0.01, and b is determined for a
given N by the requirement that the highest point rN

lies approximately between 10 and 12 fm. The parameter
b is listed in table 1. In order to check the convergence
with respect to the number of points we have considered
N = 12, . . . , 20 in steps of 2. The Gauss points and weights
for the integral over m have been chosen according to

mj = s tan
(π

4
xj + 1

)
, (65)

wj =
π

4
s yj

cos2(π
4 xj + 1)

, (66)

where xj and yj are Gauss points and weights, respec-
tively, for integration between −1 and 1. For a given N the
scale factor s is determined by minimizing the mean abso-
lute deviation between the Yukawa representation V (Y,N)

and the original potential V

∆(V (Y,N)) =
1

rmax−r0

∫ rmax

r0

dr|V (Y,N)(r)−V (r)| , (67)

evaluated between r0 = 0.01 fm and rmax = 10 fm. The re-
sulting scale factors and the relative mean deviations, i.e.,
∆(V (Y,N)) divided by the average potential strength |V̄ |

|V̄ | =
1

rmax − r0

∫ rmax

r0

dr |V (r)| , (68)

for the central and tensor potentials are also listed in ta-
ble 1.

In fig. 1 we show the original central and tensor poten-
tials together with their Yukawa representations where we
have multiplied them by the inverse of the pion Yukawa
function Jmπ

(r) for N = 12, . . . , 20 in order to exhibit
in greater detail the accuracy of the representation. One
readily notes the rapid convergence and the very good
representation over the whole range for N ≥ 16. Indeed,
the Laplace transform representations for N = 18 and 20
are undistinguishable from the original form on this scale.
Therefore, we show in addition in fig. 2 for N = 16, 18,
and 20 the relative deviations of the Laplace transform
representation from the original form. For small r-values
up to about 3 fm the deviations are extremely small,
whereas for higher r-values the relative deviations become
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Table 1. Parameter value b for the radial grid, scale parameter s for the mass grid of Gauss points and relative mean deviation
for Paris potential as a function of the number of Gauss points N .

N 12 14 16 18 20

b 0.42 0.34 0.29 0.245 0.21

s (fm−1) 1.64 2.20 2.67 3.09 3.48

∆(V
(Y,N)
C )/|V̄C| 0.25 · 10−4 0.21 · 10−5 0.54 · 10−6 0.72 · 10−7 0.14 · 10−7

∆(V
(Y,N)
T )/|V̄T| 0.20 · 10−3 0.35 · 10−4 0.72 · 10−5 0.65 · 10−6 0.12 · 10−6

Fig. 1. Central and tensor spin-isospin–dependent parts of
Paris potential. Original form: full curves; Laplace transform
representation for different number N of Gauss points: N = 12,
dotted; N = 14, dashed; N = 16, dash-dotted curves.

somewhat larger, but this is of little importance in view of
the rapid fall-off of the potentials themselves with increas-
ing r. It is interesting to note that the relative deviations
are larger for the central part than for the tensor potential.
The reason for this feature is the rather rapid variation of
the central potential near the origin.

The analogous results for the Argonne V18 poten-
tials are displayed in fig. 3 and fig. 4 with scale pa-
rameters and relative mean deviations listed in table 2.
One readily notes again the excellent representation for

Fig. 2. Relative deviation of Laplace transform representation
of central and tensor spin-isospin–dependent parts of Paris po-
tential from original form for different number N of Gauss
points: N = 16, dash-dotted; N = 18, long dashed; N = 20,
full curves.

N = 12, . . . , 20. In this case the relative deviations are
larger in the tensor part, because the central potential
exhibits a much smoother behaviour near the origin com-
pared to the Paris potential. In fact, the Laplace transform
representations of the central part for N = 18 and 20 are
undistinguishable from the original form in fig. 3 and even
on the magnifying scale of fig. 4, one notes only very tiny
deviations.
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Table 2. Scale parameter s and relative mean deviation for Argonne V18 potential as a function of the number of Gauss
points N .

N 12 14 16 18 20

s (fm−1) 2.19 2.43 2.75 3.04 3.235

∆(V
(Y,N)
C )/|V̄C| 0.21 · 10−3 0.69 · 10−4 0.58 · 10−4 0.45 · 10−4 0.36 · 10−4

∆(V
(Y,N)
T )/|V̄T| 0.61 · 10−3 0.24 · 10−3 0.11 · 10−3 0.31 · 10−4 0.98 · 10−5

Fig. 3. Central and tensor spin-isospin–dependent parts of
Argonne V18 potential: original form and Laplace transform
representation. Notations as in fig. 1. In the central part the
various Laplace transform representations are almost undistin-
guishable from the original form.

5 Results for deuteron electrodisintegration
near threshold

A benchmark for the study of meson exchange current
effects in electromagnetic reactions on nuclei is deuteron
electrodisintegration near threshold at higher momentum
transfers [2,11–14]. The threshold region is dominated by
the M1 excitation of the antibound 1S0-resonance in NN -
scattering at very low energies. With increasing momen-
tum transfer the inclusive cross-section at backward an-
gles, where the transverse current contribution via the

Fig. 4. Relative deviation of Laplace transform representation
of central and tensor spin-isospin–dependent parts of Argonne
V18 potential from the original form for different number N of
Gauss points. Notations as in fig. 2.

inelastic transverse form factor dominates, the one-body
current contribution drops rapidly due a destructive inter-
ference of deuteron S- and D-wave contributions. In this
situation the contribution of MEC, which are of shorter
range than the one-body currents, becomes relatively more
important, in fact dominant. Only inclusion of such MEC
gives a satisfactory description of experimental data yield-
ing thus clear-cut evidence for the presence of exchange
currents [4–6,11–14].

We show in fig. 5 the backward inclusive cross-section
near threshold at a c.m. excitation energy of Enp =
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Fig. 5. Inclusive cross-section for deuteron electrodisintegra-
tion near threshold for Paris potential for final-state excitation
energy Enp = 1.5 MeV and electron scattering angle θe = 155◦.
Solid curve: consistent MEC of [7] coinciding with consistent
MEC of Laplace transform representations for N = 12, 16 and
20; dashed curve: without MEC.

Fig. 6. Relative deviation of inclusive cross-sections for
deuteron electrodisintegration near threshold for Paris poten-
tial calculated with MEC from the Laplace transform repre-
sentation (d2σ(Y,N)) (N = 12, 16, 20) to the one with MEC
from [7] (d2σ) for final-state excitation energy Enp = 1.5 MeV
and electron scattering angle θe = 155◦. Notation of curves:
N = 12, dashed; N = 16, dash-dotted; N = 20, solid.

1.5 MeV as a function of the momentum transfer squared,
calculated for the consistent π- and ρ-like MEC according
to [7] and for the new Laplace transform representation for
N = 12, 16 and 20. It is almost impossible to note a dif-
ference between the different curves on this scale. For this
reason, we exhibit in fig. 6 the relative deviation between
the Laplace transform representation for N = 12, 16 and
20 and the original MEC of [7]. Already for N = 12 the
maximum deviation does not exceed 1%, for N = 16 it
is less than 0.1%. In fact, the difference to the N = 20
result is hardly noticeable even on the enlarged scale of
fig. 6. For N = 20 the agreement is perfect. This clearly
demonstrates that one has achieved already with N = 12
quite a satisfactory parametrization, while for N = 16
an almost perfect description for the consistent MEC is
obtained. Here, we do not compare to experimental data
for which one would need to include additional contribu-

Fig. 7. Inclusive cross-section for deuteron electrodisintegra-
tion near threshold for V18 potential for final-state excitation
energy Enp = 1.5 MeV and electron scattering angle θe = 155◦.
Dashed curve: without MEC; solid curve: consistent MEC of
Laplace transform representations for N = 12, 16 and 20,
which coincide with each other.

Fig. 8. Relative deviation of inclusive cross-sections for
deuteron electrodisintegration near threshold for V18 poten-
tial calculated with MEC from the Yukawa representation
(d2σ(Y,N)) for N = 12 and 16 to the one with N = 20 for
final-state excitation energy Enp = 1.5 MeV and electron scat-
tering angle θe = 155◦. Notations as in fig. 6.

tions, because we only want to demonstrate that the new
method works very well.

We then have evaluated the analogous MEC contri-
butions for the Argonne V18 potential. Also in this case
we found an excellent convergence of the Laplace trans-
form representation as is demonstrated in figs. 7 and 8
(note the further enlarged scale), where we show the same
quantities obtained for the Argonne V18 potential as for
the Paris potential. One readily notes that in this case
the convergence is even more rapid. For N = 12 the max-
imum deviation from the case N = 20 is about 0.2%, and
for N = 16 it is less than 0.01%.

We will end this section with a comparison with ex-
perimental data. In fig. 9 the theoretical results obtained
for the Paris and the Argonne potentials are exhibited to-
gether with experimental data from refs. [15–17]. The the-
ory includes besides the consistent π- and ρ-like MEC, in
addition, relativistic one-body current and wave function
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Fig. 9. Inclusive cross-section for deuteron electrodisintegra-
tion near threshold for Paris and Argonne V18 potentials for
final-state excitation energy Enp = 1.5 MeV and electron
scattering angle θe = 155◦. Dotted curve: without MEC;
solid curve: consistent MEC for Argonne V18 potential; dashed
curve: consistent MEC for Paris potential; experiment: filled
circles: [15], open circles: [16] (θe = 155◦, averaged over ener-
gies 0 MeV ≤ Enp ≤ 3MeV); filled triangles: [17] (θe = 180◦,
averaged over energies 0 MeV ≤ Enp ≤ 10MeV).

boost contributions of leading order in p/M . One readily
notes a satisfactory agreement for both potential models
with experiment up to a squared momentum transfer of
about 25 fm−2. At higher momentum transfers the theory
deviates significantly from experiment. However, in this
region one expects a break down of the present approach
in view of the applied p/M expansion [18].

6 Summary and outlook

In this paper we have shown that it is possible to construct
directly in r-space a consistent meson exchange current
for a spin-isospin–dependent NN -potential by represent-
ing the potential as a continuous superposition of Yukawa
functions, essentially a Laplace transform representation.
In this way, it is possible to rewrite the potential into a π-
and a ρ-like part, whose corresponding consistent MECs
then serve as a basis for a consistent MEC for the given po-
tential except for a small modification of the short-range
part.

The feasibility of this method by discretizing the
continuous superposition into a finite number of Yukawa
functions has been demonstrated first for the Paris poten-
tial for which a consistent r-space MEC exists already. For
a given grid of N masses, the corresponding coefficients of
the Yukawa functions are uniquely determined by a prop-
erly chosen grid of N radial points and involve a simple
matrix inversion only. It turned out that the convergence
with the number of terms is very rapid, and that with

N = 16 one obtains an excellent representation of the po-
tential. The same was found for the more recent Argonne
V18 potential.

The resulting consistent MEC, represented by a corre-
sponding superposition of π- and ρ-like MECs, has then
be checked by evaluating the inclusive cross-section of
deuteron electrodisintegration near threshold. For the as-
sociated observable, the inelastic transverse form factor,
which is sensitive to MEC, we found for the Paris poten-
tial excellent agreement with previous evaluations and for
both potentials a very rapid convergence with the number
of terms. Thus, the present method will easily allow one to
implement a consistent MEC into an r-space calculation
using phenomenological NN -potentials.

Finally we would like to emphasize that, although con-
sistency of the MEC with the potential is achieved, one
has to be aware of the fact, that this MEC is by no means
unique. We have already alluded to a certain arbitrariness
in separating a short-range part in order to eliminate an
otherwise appearing δ-function. Furthermore, there is in
addition a freedom in the spin-operator structure as has
been pointed out already in [7]. Only the longest-range
part of the π-like exchange current, namely the genuine
π-MEC is on safe grounds.

This work is supported by the Deutsche Forschungsgemein-
schaft (SFB 443).
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A 443, 726 (1985).
8. D.O. Riska, Phys. Scr. 31, 471 (1985).
9. R.B. Wiringa, V.G. Stoks, R. Schiavilla, Phys. Rev. C 52,

38 (1995).
10. M. Lacombe, B. Loiseau, J.M. Richard, R. Vinh Mau,

Phys. Rev. C 21, 861 (1980).
11. J. Hockert, D.O. Riska, M. Gari, A. Huffmann, Nucl. Phys.

A 217, 14 (1973).
12. J.A. Lock, L.L. Foldy, Ann. Phys. (N.Y.) 93, 276 (1975).
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